Relative efficiency of joint-model and full-conditional-specification multiple imputation when conditional models are compatible: The general location model.
نویسندگان
چکیده
Estimating the parameters of a regression model of interest is complicated by missing data on the variables in that model. Multiple imputation is commonly used to handle these missing data. Joint model multiple imputation and full-conditional specification multiple imputation are known to yield imputed data with the same asymptotic distribution when the conditional models of full-conditional specification are compatible with that joint model. We show that this asymptotic equivalence of imputation distributions does not imply that joint model multiple imputation and full-conditional specification multiple imputation will also yield asymptotically equally efficient inference about the parameters of the model of interest, nor that they will be equally robust to misspecification of the joint model. When the conditional models used by full-conditional specification multiple imputation are linear, logistic and multinomial regressions, these are compatible with a restricted general location joint model. We show that multiple imputation using the restricted general location joint model can be substantially more asymptotically efficient than full-conditional specification multiple imputation, but this typically requires very strong associations between variables. When associations are weaker, the efficiency gain is small. Moreover, full-conditional specification multiple imputation is shown to be potentially much more robust than joint model multiple imputation using the restricted general location model to mispecification of that model when there is substantial missingness in the outcome variable.
منابع مشابه
Multiple imputation of covariates by substantive model compatible fully conditional specification
Multiple imputation (MI) is a practical, principled approach to handling missing data. When used to impute missing values in covariates of regression models, imputation models may be mis-specified if they are not compatible with the substantive model of interest for the outcome. In this article we introduce the smcfcs command, which imputes covariates by substantive model compatible fully condi...
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملMultiple imputation for handling missing outcome data when estimating the relative risk
BACKGROUND Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whe...
متن کاملConvergence Properties of a Sequential Regression Multiple Imputation Algorithm
A sequential regression or chained equations imputation approach is a Gibbs sampling type iterative algorithm that imputes the missing values using a sequence of conditional regression models. It is a flexible approach for handling different types of variables and complex data structures. Many simulation studies have shown that the multiple imputation inferences based on this procedure have des...
متن کاملMultiple imputation of covariates by fully conditional specification: Accommodating the substantive model
Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with using multiple imputation. Imputation of partially observed covariates is complicated if the substantive model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or interaction terms, and standard software implementations of multiple imputation may imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical methods in medical research
دوره شماره
صفحات -
تاریخ انتشار 2016